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INTRODUCTION 

A precise timing scheme 

Consider the precise timing scheme shown in Figure 1. A local 

timing signal is available, but time as given by this signal contains 

errors. An independent timing signal is also available, and time as 

generated by it also contains errors; however, these errors are independ­

ent of the errors due to the local signal. By combining these two 

independent signals, it should be possible to obtain an improved timing 

signal. 

LOCAL 
TIMING 
SIGNAL 1 
INDEPENDENT 
TIMING 
SIGNAL 

COMBINE 
SIGNALS 

IMPROVED TIMING 
SIGNAL 

J 

Figure 1. A precise timing scheme 

In the case considered in this work, time as generated by a high 

quality quartz oscillator is updated using a composite timing signal 

derived from Omega navigation system broadcasts. Before discussing the 

manner in which the two timing signals are combined, i.e., the manner 

in which the updating is done, a more detailed discussion of the two 

timing signals is In order. 
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The composite Omega signal 

The Omega navigation system consists of several broadcasting stations 

located throughout the world. Each station transmits three very low 

frequency (VLF) signals. These signals are each phase-locked to a cesium 

beam reference which is, in turn, aligned with the cesium beam references 

at the United States Naval Observatory (USNO). Since these signals are 

available throughout the world due to the long-range propagation character­

istics of VLF, and since they are aligned with the references at the USNO, 

the Omega navigation system is attractive for purposes of precise time 

dissemination. Indeed, the Omega system has been used in several such 

applications (1, 2, 3). 

The motivation for using a composite Omega signal derived from all 

three frequencies of an Omega station's signals rather than a single 

frequency signal will be evident after examining the propagation character­

istics of VLF signals. 

At very low frequencies the earth and the ionosphere act as a 

concentric spherical-shell waveguide. This makes possible world wide 

coverage of the Omega broadcasts with just eight transmitters judiciously 

placed throughout the world. See Figure 2. 

Ionosphere 

.^Observer 
earth 

Omega 
station 

Figure 2. Earth-ionosphere waveguide 
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The phase velocity of VLF radio waves propagating in this waveguide is a 

function of many parameters. Among the most important are the effective 

height of the ionosphere, the orientation of the propagation path with 

respect to the earth's magnetic field, and the ground conductivity. If 

any of these parameters vary with time, then the phase velocity of the 

signal will vary about its nominal value. This will obviously give rise 

to errors if the phase of the signal is used for timing. 

The most troublesome of the time-varying parameters is the effective 

height of the ionosphere. This parameter is a function of the position 

of the sun, or time of day, as well as of solar activity. During the day 

the effective height is approximately 70 km, and during the night it is 

approximately 90 km. This effect gives rise to relatively large periodic 

changes in the phase velocity of waves propagating in the earth-ionosphere 

waveguide. This is known as the diurnal shift in the phase velocity. The 

period of the diurnal shift is 24 hours. 

A typical plot of phase delay, which is inversely proportional to 

phase velocity, for a typical propagation path is given in Figure 4 (4). 

The propagation path is from Trinidad to North Dakota. This plot is of 

21 days of superimposed data (10-31 March, 1975). It is clear that any 

kind of filtering operation to reduce this large variation in phase delay 

will be difficult because of the long period and large amplitude of the 

variations. 

Many on-line methods of mitigating the diurnal shift effect have 

been devised. Almost all of them involve the calculation of an artificial 
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group delay from the measured phase delays at two or three of the broad­

cast Omega frequencies (5,6,7,8,9). Therefore, a brief discussion of the 

group-delay characteristics of Omega signals is in order at this point. 

The group velocity is defined as 

= dp 

where phase shift as a function of angular frequency cois given by 

<5(w) = 3((jo)d 

and d is the distance of propagation. Then group delay is given by 

T = — . 

Physically, group velocity is the velocity with which the signal energy 

or information propagates, as compared to phase velocity, the velocity 

of the constant phase fronts (10). 

For certain simplifying assumptions the theoretical group velocity 

characteristics of the earth-ionosphere waveguide have been calculated 

by Hampton and Watt (11,12). These are displayed in Figure 3 as plots of 

Vg, the group velocity, versus o), the angular frequency, and the effective 

height of the ionosphere. 

It is apparent from Figure 3 that at a frequency between 11.5 and 

12.5 kHz the group velocity is nearly invariant between day (70 km) and 

night (90 km). Thus, if one were able to calculate a group velocity 

referred to a frequency between 11.5 and 12.5 kHz, then the diurnal shift 

in the group velocity should be small. 
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90km (NIGHT) 
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FREQUENCY KHZ 

Figure 3. Group velocity versus frequency (11) 

A method for calculating an artificial group delay referred to any 

frequency has been developed by Brown and Van Allen (9). The calculated 

group delay is a linear combination of the three measured Omega phase 

delays. This is the composite timing signal referred to previously. 

The calculation of this composite signal is described in Appendix A. 

The composite signals corresponding to the plots in Figure 4 are shown in 

Figure 5 (4). Note that again 21 days of signals are superimposed. The 
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PHASE OELRY-IO.Z KHZ 
PROPAGATION PATH B-0 

-T 
18.00 

—? 
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^HOUR 0F°DflY (GMT° 

15.00 

Figure 4. Phase delay at 10.2 kHz for the path Trinidad to N. Dakota (4) 
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Figure 5. Omega group delay referred to 12.0 kHz corresponding to 
Figure 4 (4) 
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reference frequency in this case is 12.0 kHz. Note that the diurnal 

shift has almost completely been replaced by more "rapid" variations with 

smaller amplitude. These "high frequency" variations are much easier to 

filter than the 24 hour errors, so this is the motivation for considering 

the composite signal. Next, the local timing signal is discussed. 

The local signa1 

The local timing signal is assumed to be the output of a high quality 

quartz oscillator. Let this signal be 

w(t) = A(t)sin(w t+ i (t)) 
o n 

where is the nominal angular frequency and di^^t) is a perturbing phase 

noise term due to frequency drift and so forth. If no nonlinearities are 

present, A(t) is of no consequence for timing purposes, and the time 

error of this signal is represented by 

*n(C) 

"o 

Let this time error be given by 

dL(C) 
y(t) = " 

U) 
o 

The characteristics of y(t) have been well-documented in the literature 

on the stability of frequency standards (13-23). 

Essentially, y(t) varies quite slowly in comparison to the variations 

in the Omega composite timing signal. The characteristics of y(t) will 

be discussed in more detail in a later section on the modeling of this 
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process. Figures 6, 7, 8, 9, 10 are sample plots of y(t) for the high 

quality quartz oscillator which supplied the data for this investigation. 

The wide lines will be discussed in the section on modeling the local 

timing signal. The thin lines represent y(t). These figures can be 

compared with Figure 5. If this is done, it is quite clear that y(t) does 

indeed vary much more slowly than do the variations in the Omega composite 

timing signal. 

Now that the timing signals have been discussed, it is appropriate to 

discuss how they may be combined to form an improved timing signal. 

Integration of the timing signals 

First some notation is given. Let the Omega navigation signals be 

given by 

w^(t) = a^(t)sin(w^t - g^d + d^(t)), 

Wgft) = a2(t)sin(w^t - g^d + d^(t)), 

Wgft) = a2(t)sin(Wgt - p^d + d^(t)), 

where 

= 2lT(10.2) krad/sec, 

^2 = 271(11 1/3) krad/sec, 

= 2TT(13.6) krad/sec 

are the known nominal Omega broadcast frequencies, and p^d, and p^d 

are the known nominal phase delays for a particular path, and 

and are the phase delay variations for each respective signal. 
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Figure 6. Local oscillator drift 
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Figure 7. Local oscillator drift 
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Figure 8. Local oscillator drift 
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Figure 9. Local oscillator drift 
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Figure 10. Local oscillator drift 
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As before, let the local oscillator output be 

w(t) = A(t)sin(w t + </) (t)). 
o n 

Signals of the appropriate frequencies can be derived from this signal. 

The phases of the derived signals can be compared with the phases of the 

corresponding Omega signals to yield the phase delays m^, m^, and m^ 

which are given by (letting WQ = U)̂ ) 

mi = ^1 - 4^, 

my = dg -

From Appendix A the calculated group delay variation is 

6Tg = c^Cdi/w^) + Cg («42/^2) + CgCdg/Wg) 

where c^, Cg, and c^ are given in Appendix A, and 

Ci + C2 + C3 = 1. 

Form m^/Wi, mg/w^, and m^/ and obtain 

'l'"! • 

ijMj = ( . 

II 

• 

so that 

CiCm^/Wi) + Cgfm^/Wg) + c^Om^/Wg) = - y(t). 

Hence, at the receiver the difference 5Tg-y(t) (or y(t)-GTg) is available, 

Now recall that the absolute phase of a signal divided by its 

angular frequency has dimensions of time. Call the true time s. The 
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composite timing signal is then 

s + ôTg, 

and the local timing signal is 

s + y(t) . 

Relabel and y(t) as 

y(t) = n^(t), 

6Tg(t) = ngft). 

Then the local timing signal is 

s + n^, 

and the Omega composite timing signal is 

s + n^. 

It has been shown by Brown, Van Allen and Strohbehn and Brown 

and Nilsson (4, 24) that the problem of the optimum (in the least mean 

square error sense) means of integration, or combination, of these two 

timing signals can be considered as a complementary filter problem. To 

see this consider Figure 11 which shows three mathematically equivalent 

implementations of a complementary filter. Consider part (a) of Figure 11. 

Recall that n^ varies slowly compared to n^. Heuristically then, it 

appears that choosing l-Y(s) as a high pass filter, which implies that 

Y(s) is low pass, would mitigate the effects of n^ and n^. Observe that 

since the two filters are complementary, the desired signal s is undis-

torted. This is a desirable property for situations where s is not 

random in character. 
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s{t) + n,(t)-

s(t) + ngtt)-

1 - Y{S) 

Y(S) 3 

s(t) 

(a) COMPLEMENTARY FILTER. IN COMPLEX 
DOMAIN: ?" S + N,(1 - Y) + NgY 

s(t) + n,(t) 
-k» 

s(t) + ngft) JL - ng 
-*0- Y(S) 

(b) DIFFERENCING - FEEDFORWARD IMPLEMENTATION. 

s(t) + n,(t) + s(t) 

"1 ÎT 

(c) FEEDBACK IMPLEMENTATION 
s(t) + ngCt) 

Figure 11. Three equivalent implementations of a complementary filter 

Note that s + n^ is not available directly at the receiver, but 

that n^-ng is available in addition to s + n^. This means that, 

practically, implementation (b) or (c) of Figure 11 would have to be 

used. Implementation (b) is convenient for off-line analysis purposes 

and was used in this work. Implementation (c) would probably be best 

for an on-line application. This point is discussed by Strohbehn and 

Brown (25a). 

Consider implementation (b) of Figure 11. What is desired is to 

estimate n^(t) given the measurement n^(t)-n2(t). The optimum linear 

estimator in the minimum-mean-square-error sense is a Kalman filter. 

Thus, optimal Integration of the timing signals can be accomplished 

by implementing an appropriate Kalman filter in the complementary filter 
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Implementation shown in Figure 11(b). The setting for this investigation 

has now been described so the objectives of this work will now be stated. 

Objectives 

In order to implement a Kalman filter the stochastic processes 

involved, in this case n^(t) and ngft), must be modeled in state-space 

form. Therefore, one objective of this research was to obtain valid 

state-space models for both the local timing error process n^(t) and 

the Omega composite timing error process n^Ct). An additional objective 

was to assess the applicability of the precise timing scheme discussed 

previously, i.e., the complementary Kalman filter using the models 

developed for n^(t) and ngft). 
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MODELS FOR THE COMPOSITE OMEGA SIGNAL 

Description of data 

Strlpcharts of Omega data for all three frequencies, 10.2, 11 1/3, and 

13.6 kHz for five different propagation paths for the days 1 March, 1975 

through 31 March, 1975 were available to the author. They were obtained 

by Dr. R. L, Van Allen and were used in his work (25b). These data were 

in the form of phase differences between a cesium reference at the 

appropriate frequency and the Omega signal. The method of obtaining the 

absolute phase delay is described in Appendix B. 

Five data sets were compiled. Each set consists of phase data for 

all three frequencies sampled once every 20 minutes. This sampling time is 

clearly very small compared to the variations of interest. Occasionally, 

bad data due to equipment malfunction were encountered. In these cases 

interpolated (not linear) data were substituted. The interpolation was 

done by observing data on previous or preceding days and essentially 

"matching endpoints" to produce a short interpolated span of data. The 

longest stretch of bad data encountered was 3 hours in length. 

The first data set consists of 20 days of data, 1 March, 1975 through 

20 March, 1975, for the path from Hawaii to North Dakota. The second 

set consists of 5 days of data, 3 March, 1975, through 7 March, 1975, for 

the path from Trinidad to North Dakota. The third set consists of 5 days 

of data, 6 March, 1975, through 10 March, 1975, for the path from Norway 

to North Dakota. The fourth set consists of 5 days of data, 10 March, 
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1975, through 14 March 1975, for the path from North Dakota to Hawaii. 

The fifth and final set consists of 5 days of data, 16 March, 1975, through 

20 March, 1975, for the path from Japan to Hawaii. 

For each set of data the corresponding group delay signal, i.e., 

composite timing signal, was calculated for a reference frequency of 12.47 

kHz. See Appendix A. The arithmetic mean was then subtracted to simulate 

ngCt). Two typical samples of ngCt) are shown in Figures 12 and 13. 

Figure 12 shows ngCt) for the path North Dakota to Hawaii. Figure 13 

shows ngCt) for the path Trinidad to North Dakota. 

The form of the models 

Estimates of the time autocovariance functions for the 5 sets of 

data were computed using the estimator (26) 

- N-n—1 

• 5̂  iloVl+n 

N-1 
where N is the number of data points, T is the sampling interval, {x } 

1=0 

is the time series for which the estimate of the autocovariance 

function is desired, in this case n^ClT), and ̂ (nT) is the estimate of the 

autocovariance function at nT. These estimates are shown in Figures 14, 15, 

16, 17, and 18. Figure 14 is for the path Hawaii to North Dakota, Figure 

15 is for the path Trinidad to North Dakota, Figure 16 is for the path 

Norway to North Dakota, Figure 17 is for the path North Dakota to Hawaii, 

and Figure 18 is for the path Japan to Hawaii. 
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Figure 12. Omega composite timing error for the path N. Dakota to Hawaii 
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Figure 13. Omega composite timing error for the path Trinidad to N. Dakota 
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Figure 14. Autocovariance estimate for the path Hawaii to N. Dakota 
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These estimates of the autocovariance functions have in common the 

basic features of an exponential decay added to an undamped oscillatory 

component. 

Consider the "deterministic" stochastic process given by 

z(t) = AcosfWgt) + BsinfWgt) (1) 

where A and B are independent normal random variables. It is easily 

shown that 

R(T) = E[z(t)z(t + T)] = Â COSCWGT) 

where EL*1 is the expectation operator. If the periodic component of the 

autocovariance function of an ngft) process is approximated by its first 

two Fourier cosine components, then two independent processes such as 

given by Equation 1 with appropriate parameters would model the periodic 

component of the ngCt) process. Note that physically this periodicity 

arises from the residual diurnal shift remaining in ngCt). This periodic 

component should have a period of 24 hours, and indeed, this is what is 

observed. 

An independent Markov process with autocovariance function 

R(T) = ae , 

where a and b are suitably chosen, added to the independent processes 

of the form of Equation 1, would then appear to be a reasonable model for 

an ngCt) process. This general approach was used by D'Appolito and 
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Kasper (27) on the residuals of an Omega navigation signal after certain 

propagation corrections had been made. However, the model considered here 

contains an additional harmonic component. A block diagram for this type 

of model is shown in Figure 19. In Figure 19 w(t) is unity white noise. 

INDEPENDENT 
RANDOM 
INITIAL 

CONDITIONS 

Figure 19. A model for the ngCt) process 

WQ corresponds to a period of 24 hours, and corresponds to a period of 

12 hours. One state representation of this system is clearly 

-b 0 0 0 0 •feabw(t) 

0 0 
•^0 

0 0 0 

0 0 0 0 X + 0 

0 0 0 0 % 0 

0 0 0 >0)1 0 0 

n2(t) = [1 1 0 1 0]X 

where x is the state vector. The initial conditions corresponding to 

Equation 2 are independent random variables with 

w(t) 
-\r2a¥ 

* s + b 

1 •J J 

s^ + u 
1 
0 V* 

1 
2 0 
S + 0) 

1 
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E[x(0)] =[00000]', 

E[x(0)xT(0)] = Diag [a OQ Op aj a^] , 

2 . 
where OQ is the coefficient of the fundamental periodic component of the 

2 
autocovariance function, and is the coefficient of the first harmonic 

component. 

The form of the model to be used for the ngCt) processes is thus 

given by Equation 2. This is a state-space dynamical model whicV^ for 

discrete time, yields the difference equation 

= 

c 0 0 0 0 

0 d  e 0 0 

0 -e d  0 0 

0 0 0 f  s  

0 0 0 - g  f  

' "k 

0 

Vi + 0 

0 

0 

(3) 

where 

"k = '(V-

'k " 'k-1 

c = 

d = cos(uyA T), 

e = sinCWgA T), 

f = cos&d^A T) , 

g = sin(u^A T) , 

Uj^/v, normal(0, a(l-e ) 
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Equation 3 is in the form needed for implementation of a discrete Kalman 

filter and is derived in Appendix C. Next, the identification of the 

2 2 
parameters a, b, and a will be discussed. Note thatw ̂  andw ̂  are 

known. 

The model parameters 

The form of the composite timing signal error model has been developed 

in the previous section. The parameters for this model now must be 

2 2 
determined. First, the variances OQ and are considered. 

Since the exponentially decaying component of the estimated time 

autocovariance functions dies out rapidly, a numerical Fourier cosine 

analysis of the periodic component of the autocovariance can be done using 

the expression (28, 29) 

= 5 J, 
k=l 

where a^ is the coefficient of the n^^ Fourier cosine component, is 

the k*"^ value of the autocovariance estimate R such that T^, k = 1, ... , M 

includes exactly one period of the periodic component of R in such a way 

that the even extension of R^, k = 1 M, is consistent with the 

estimate of R and the exponentially damped component has died out. 

This was done for each of the 5 estimates of the autocovariance 

function for each data set. The results are tabulated in Table 1. 
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Table 1. Parameter estimates for the oscillatory component of n^Ct) 

Propagation Path jisec a„ tisec >2 M-

Hawaii to North Dakota 
Trinidad to North Dakota 
Norway to North Dakota 
North Dakota to Hawaii 
Japan to Hawaii 

120.45 
64.92 

1046.48 
8.19 

100.77 

14.22 
66.87 
84.68 
25.10 
122.09 

Average Value of a^: 

Average Value of ag: 

268.16 y,sec 

62.59 )ji,sec 

Observe that 

-°0' 

"2 

2 2 
Thus, Table 1 gives the estimates of the parameters and Next, the 

parameters a and b are considered. 

2 2 
After estimating and it was possible to estimate a residual 

2 
autocovariance function for each case by subtracting Â cos (W T) + 

2 
a^cosCoJiT) from the previously estimated autocovariance function. A 

typical result is shown in Figure 20 for the propagation path Hawaii to 

North Dakota. An exponential decay of the form 

ae -blxl 

was fit to each of these residual autocovariance functions. The results 

are tabulated in Table 2. This completes the determination of the 

model parameters. 
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Figure 20. Residual autocovariance for the path Hawaii to N. Dakota 
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Table 2. Parameter estimates for the Markov component of ngCt) 

2 -9 _1 
Propagation Path a p,sec b 10 ^sec 

Hawaii to North Dakota 
Trinidad to North Dakota 
Norway to North Dakota 
North Dakota to Hawaii 
Japan to Hawaii 

625.84 
124.02 
969.83 
65.21 
123.70 

2.170 
0.416 
0.135 
0.864 
0.240 

Average Value of a: 

Average Value of b: 

381.72 [isec 

7.65 X 10 p,sec ^ 

Two types of models were considered in this work. Both types were 

of the same form as described in the previous section, but the two types 

differed in parameter values. One type, called an all-purpose model, was 

postulated as a possible model for any propagation path. The other type, 

called a special-purpose model, was to model only a particular propagation 

path. The special-purpose model for a particular path used the parameter 

estimates based on the data for that propagation path. The all-purpose 

model originally used the average values of the parameter estimates; 

however, one set of parameter estimates (Japan to Hawaii) used in the 

average was based on data with some spans of spurious data. When these 

spurious data were later replaced with Interpolated data, as described 

previously, the parameter estimates changed somewhat so that the parameters 

of the all-purpose model no longer corresponded exactly with the average 

values of the parameter estimates. However, there was no reason to change 

the all-purpose model since the values used in this model only need to 
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be roughly representative of all propagation paths. These model parameters 

are summarized in Table 3. 

Table 3. Model parameter estimates 

2  2  2 - 9 - 1  
Model OQ OJ a ̂ sec b 10 p,sec 

Special-Purpose Models: 

Hawaii to North Dakota 120 .45 14, .22 625 .84 2. 170 
Trinidad to North Dakota 64 .92 66, ,87 124 .02 0. ,416 
Norway to North Dakota 1046 .48 84, .68 969 .83 0. ,135 
North Dakota to Hawaii 8 .19 25, .10 65 .21 0, .864 
Japan to Hawaii 100 .77 122, .09 123 .70 0. ,240 

All-Purpose Model 316 .66 38, .17 1201 .81 0, .840 

Composite signal model summary 

The models to be used for the Omega composite timing signal error have 

been determined. The models are of the form given by Equation 2 with the 

parameters summarized in Table 3. In the next section, the state-space • 

models for the local timing signal error will be developed. 
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MODELS FOR THE LOCAL SIGNAL 

Description of data 

Stripcharts of local oscillator drift data were available to the 

author. They were obtained from a high quality quartz oscillator (Hewlett-

Packard Model 104AR) maintained by the Dept. of Electrical Engineering, 

Iowa State University. These data were in the form of ^sec of time 

error as compared with the WWVB timing signal at 60 kHz. This signal 

contained a diurnal shift which was compensated visually by the author 

while sampling the stripcharts. This compensation was in the form of 

linear interpolation. Since the data had obvious linear trends, this 

procedure appeared to be satisfactory. Linear interpolation was also used 

in the presence of obvious sudden ionospheric disturbances (SIDs) as well 

as between sampled data points. The stripcharts were sampled once every 

two hours. Therefore, when the resulting data were used in later simula­

tions, it was necessary to interpolate between samples. 

Five sets of local oscillator drift data were compiled from a single 

time record by the author as described. These data were all from the same 

oscillator; however, for each set the initial drift was taken to be zero 

for the first data point. As mentioned previously, the thin lines on 

Figure 6 through 10 are plots of these data. 

The original model 

The precise timing scheme under study in this work has been investi­

gated previously by the author (4, 25a, 30). In one of the referenced 

papers (25a) the local timing signal error was modeled as a random ramp 
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added to a random walk. This can be seen heuristically as follows. Upon 

observing the plots in Figures 6 through 10, it is apparent that the 

data look like a ramp for a period of time, but occasionally, the slope 

of the ramp changes in some unpredictable fashion. The random ramp 

component would model the ramp-like periods and the random walk would 

allow a Kalman filter to adjust to changes in the slope. Also, it is 

well known that for short-term periods, say 100 seconds, the phase drift 

of quartz oscillators is well-modeled by a random ramp added to a random 

walk (16,21). This type of model is similar to the model used by 

Santamore (31). 

In the simulations performed by Strohbehn and Brown (25a) this model 

performed quite well. Therefore, as a beginning the local timing signal 

error n^(t) will be modeled by a random ramp added to a random walk. A 

block diagram for this model is shown in Figure 21. 

Figure 21. Random ramp plus random walk model for the n^(t) process 

It is apparent from Figure 21 that one state-space representation 

of this model for n^(t) is given by 

u(t). 

0 

RANDC 

RANDOM RAMP 

RANDOM WALK 
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0 0 0 u(t) 

X = 0 0 1 X + 0 (4) 

0 0 0 . 0 . 9 

n^(t) =[11 0]x 

where x is the state vector and u(t) is a white noise. Equation 4 yields 

the difference equation necessary for implementation of a Kalman filter 

where 

(5) 

10 0 a 

II 0 1 AT *k-l + 0 

0 0 0 0 

"k • 

'k - Vi = 

a^, normal (0, S^AT) , 

and SQ is the variance parameter of the random walk. This is derived 

analogously with Equation 3. Note that the slope k of the random ramp is 

2 2 
assumed to be normal (m, o^) where m and must be determined. 

The original state-space model for the local timing signal error 

2 
n^(t) is now given by Equation 5. Only the parameters S^, m, and 

need be determined. This is discussed next. 

2 
The parameters m and were estimated as follows. A straight line 

of the form 

n(t) = kt 
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was fitted using "least squares" to each set of drift data. The resulting 

slopes k were averaged to yield m. The corresponding variance was the 

2 
estimate of o^. These "best" straight lines are the straight wide lines 

in Figures 6 through 10. The results are given by 

-10  
m = -6.37 X 10 , 

(6)  

Ok = V^k = 2.77 X lO'lO. 

Finally, the parameter SQ was estimated as follows. The corresponding 

"best" straight line for each data set was subtracted from the data to 

yield a residual drift. This is the wide line about zero drift in Figures 

6 through 10. The ensemble variance for each point of this residual series 

was estimated. This is the wide line in Figure 22. A "best" straight 

line was fitted to this ensemble variance to yield 

variance(t) = S^t. 

This line is the thin line in Figure 22. This SQ, the desired parameter, 

is 

-9 2 
SQ = 1.16 X 10 (j,sec /p,sec. (7) 

The original state-space model for the local timing signal error 

n^(t) is now entirely specified by Equations 5,6, and 7. The Kalman 

filter simulation results, discussed later, will show that this model is 

apparently not a valid description of n^(t). The next model which is 

discussed turns out to be a better description of the local timing signal 

error process n^(t). 
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The final model 

It is well-known that in quartz oscillators the long term phase drift 

is dominated by the integral of what is known as "flicker noise" (19, 20, 

21, 22). It will be seen that deriving a state-space model for flicker 

noise is not completely straightforward, but first, a description of 

flicker noise is in order. 

The stochastic process referred to as flicker noise is not stationary 

so that the concept of a spectral density is not well-defined; however, 

measurements of the power spectrum of certain physical processes yield a 

power spectrum of the form 

SW - ̂  (8) 

for all values of w investigated. Such processes are referred to as 

flicker noise processes. Note that Equation 8 must break down near zero 

frequency and above some finite frequency since infinite-energy processes 

cannot exist physically. 

Proceeding formally, consider a linear system with transfer function 

H(s) given by 

H(s) =-~ . (9) 

vs 

Now consider driving this system with a white noise with spectral density 

SQ. Then if the resulting process had a spectrum, it would be of the 

form „ 
0 

S W = , (10) 

i.e., a flicker noise. Hence, one can model the physical processes with 
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power spectrum measurements following Equation 8 by white noise driving a 

linear system with transfer function given by Equation 9. The problem 

with this approach is that since the H(s) given by Equation 9 is not a 

rational function of polynomials, there is no finite state representation 

of this linear system. 

Consider the plot of Equation 10 in Figure 23. The straight line 

with slope 10 dB/decade can be approximated arbitrarily closely by step­

like functions which are the frequency response of a finite number of 

cascaded lag networks (32). One such approximation is shown in Figure 23. 

Therefore, the system with transfer function given by Equation 9 can be 

modeled aribtrarily closely over a frequency range of interest by a 

cascade of lag networks. Barnes, and Barnes and Jarvis have used this 

approach for modeling flicker noise processes (18, 32). Although state-

space models for these processes have not been considered previously, the 

method of Barnes, and Barnes and Jarvis (18, 32) readily yields finite 

state representations for the approximating process. 

This approach will be taken for the final model of the n^(t) process. 

For simplicity only one low pass filter will be used to model the flicker 

noise process. Its parameters will be derived after a brief discussion of 

a heuristic reason for modeling n^(t) in this manner. 

Recall from Figures 6 through 10 that the sample functions of n^(t) 

look like random ramps which occasionally change slope. A first-order 

Markov process with a long time constant would approximate a constant 

over a certain time interval, but would drift off. This is easily seen 

by noting that 
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S(W) 

20 dB/decade 

10 dB/decade 

Figure 23. Spectral approximation of a flicker noise process 

lim a'e ^^1= a' VT , 
b'-.0 

where b approaching zero implies that the time constant approaches infinity. 

This would be the autocovariance function of a constant process. Thus, 

integrating the output of a first-order Markov process with the long time 

constant should produce sample functions of the form shown in Figures 6 

through 10. This heuristic reasoning, which would also follow for higher-

order Markov processes, agrees with the approach of Barnes, and Barnes 

and Jarvis (18, 32). 

Therefore, the final model for the n^(t) process is an integrated 

first-order Markov process. A block diagram is shown in Figure 24. 

Clearly, a state-space representation for this model of n^(t) is given by 

« -b 0 •Jlsib u (t) 
X = X + 

1 0 0 

= [1 0]x 
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u(t)- V2^ 

0 

n, (t) 

Figure 24. Integrated Markov model for the n^(t) process 

where x is the state vector, u(t) is a unity white noise, and the 

parameters a' and b' must be determined. Observe that the initial con­

ditions are also random variables. The parameters a' and b and the initial 

condition statistics will be determined next. 

2 
First, the variance of the Markov process a will be chosen as 

which was determined in the last section. The slopes of the sample 

functions of n^(t) appear nearly constant for periods of roughly 100 data 

points. Thus, let b' be given by 

b' = -12 -1 
= 8.33 X 10 ^sec . 

100 points 

The n^(t) process is assumed zeroed at time equal to zero, and the slopes 

k of the "best" straight line fits to the n^(t) sample functions have the 

2 
statistics m and o^. Thus, let the initial condition on the Markov process 

2 
be a random variable which is normal (m, o^). This determines the n^(t) 

final model parameters. Note that determining these parameters is equiva­

lent to determining the frequency range of interest and the accuracy of 

approximation of the flicker noise process. 
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Equation 11 yields the difference equation 

where 

o
 

o
 

q  

X, _ + 
k-1 

0 d 1 0 

Xk = x(y, 

q,^ normal (0, a(l-e 

c = e-^ûT^ 

d = -g (1-e , 

Equation 12 Is derived analogously with Equation 3 and 5. 

(12) 

Local signal model summary 

The original state-space model for the local timing signal error 

process n^(t) is given by Equation 5. This model will be shown Inadequate. 

The final state-space model for n^(t) is given by Equation 12. This 

model will be shown to be better than the random-ramp plus random-walk 

model previously discussed. Also, this model requires only two states 

rather than three. 
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THE KALMAN FILTER SIMULATIONS 

Simulation description 

Recall that the precise timing scheme under study optimally integrates 

a local timing signal with an Omega composite timing signal by estimating 

n^(t), given n^(t)-n2(t). The estimator is a Kalman filter that is based 

processes were developed in the previous sections. Several simulations 

were done using real data in order to test the validity of these models, 

and, in addition, assess the precise timing scheme under consideration for 

the assumed models. The simulations were done off-line by using the data 

sets described previously to calculate n^(t)-n2(t) and then iterating the 

well-known Kalman filter equations given by Gelb (26). They are 

on state-space models of the processes n^(t) and ngCt). Models for these 

kL'k "k'kJ • 

(13) 

*k+r 'k̂ ' 

••k+i- ''k̂ î + "k-

where the state vector x to be estimated satisfies 

Wj^-- normal(0,Q^), (14) 

=0, j f k, 

and the measurements satisfy 
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-v normal (0,R^) , (15) 

E[v^vj] =0, j ̂  k, 

and is the Kalman gain vector, is the a priori estimate of x(t^), 

is the a priori error covariance matrix, x^ is the a posteriori estimate 

of x(t^), and is the a posteriori error covariance matrix. 

Expressions for Q^, and are derived in a straight forward 

manner in Appendix D. Also derived in Appendix D are the initial 

conditions PQ and x^. The results will now be given for each model 

considered. 

g 

First, for the original n^(t) model x e R and 

H 

Qt,= 

A 0 0 0 0 0 0 0 
0 B c 0 0 0 0 0 
0 -C B 0 0 0 0 0 
0 0 0 D E 0 0 0 
0 0 0 -E D 0 0 0 
0 0 0 0 0 1 0 0 
0 0 0 0 0 0 1 AT 
0 0 0 0 0 0 0 1 

F 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 G 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 

Vk, 

Vk, 

(16) 

(17) 

(18) 
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H .  = [ - 1 - 1 0  - 1 0  1  1  0 ]  Vk, (19) 

v-T -10. 
Sg = [ 0 00 00 0 0 -6.37x10 ], (20) 

Po = 

H 0 0 0 0 0 0 0 
0 I 0 0 0 0 0 0 
0 0 I 0 0 0 0 0 
0 0 0 J 0 0 0 0 
0 0 0 0 J 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 M 

(21) 

where 

AT = = 1.2 X 10 |j,sec, 

A = 

B = cos((jOqAT) = 0.996197, 

C = sinfWqAT) = 0.087129, 

D = cos(w^AT) = 0.984900, 

E = sin(w^AT) = 0.173123, 

F = a(l-3"2b6T), 

G = SqAT = 1.397688 ̂ sec , 

H = a, 

2 I = a, 

J = a' 

M 

0' 

2 
1' 

2 
= 7.678408 x 10 

-20 

and a, b, OQ, and are given for the all purpose model and each special 

purpose model in Table 3. 

For the final n^(t) model x g R and 
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where 

Qi, = 

<-T 
'o 

A 0 0 0 0 0 0 
0 B c 0 0 0 0 
0 -C B 0 0 0 0 
0 0 0 D E 0 0 Vk, (22) 
0 0 0 -E D 0 0 
0 0 0 0 0 N 0 
0 0 0 0 0 T 1 

F 0 0 0 0 0 0 
0 u 0 0 0 0 0 
0 0 u 0 0 0 0 
0 0 0 V 0 0 0 V k, (23) 
0 0 0 0 V 0 0 
0 0 0 0 0 Y 0 
0 0 0 0 0 0 z 

= 0 V k, 

= [-1 -1 0 -1 0 0 1] V k, (24) 

= [0 0 0 0 0 m 0] (25) 

H 0 0 0 0 0 0 
0 I 0 0 0 0 0 
0 0 I 0 0 0 0 

= 
0 0 0 J 0 0 0 (26) 
0 0 0 0 J 0 0 
0 0 0 0 0 M 0 
0 0 0 0 0 0 0 

m = -6.374784 x 10 

Z = 0.158 |j,8ec^, 

Y = 1.519825 X lO" 

U = I/IOOO jisec^, 

V = J/1000 p,8ec^, 

N = 0.9900054, 

-10 

•21 
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T = 1.19 X 10*, 

and A, B, C, D, E, F, H, I, J are as in Equations 16 through 21. 

Observe that since data for n^(t) are available, the actual error 

sequence (e^^^O^ and an estimate of its root mean square value (RMS) 

e 
rms % i 

1/2 

are available for a given simulation where NQ is the total number of data 

points used in the simulation. 

The simulation results for the Kalman filter based on the original 

n^(t) model are reported next. 

Results for the original local signal model 

Simulations as described previously were carried out using Equations 

13 through 21 (See Appendix E for a sample program). First, a simulation 

was done using an all purpose model and 5 days of data for the path Hawaii 

to North Dakota. A plot of the resulting timing error is shown in Figure 

25. The RMS error predicted by the filter was 32.2 |j,sec, but the observed 

RMS error was 8.4 (j,sec. Also, the filter did not appear to reach a 

steady-state since the terms of the P-matrix (the a posteriori error 

covariance matrix) did not appear to have converged, but were steadily 

increasing. Since this was the case, the last values of the P-matrix were 

used to predict the RMS error above. For this simulation the filter 

certainly did not perform well. 

To see if perhaps a special purpose model could improve the filter's 

performance, another simulation was done using the same data, but with 
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Figure 25. Simulated time error for the path Hawaii to N. Dakota and the all-purpose model 
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the appropriate special purpose model instead of the all purpose model. 

A plot of the resulting timing error is shown in Figure 26. Again, the 

filter did not appear to converge to a steady-state condition. The last 

values of the P-matrix were used to predict the RMS error to be 31.6 p,sec, 

but the observed RMS error was 5.1 p,sec. Again, the filter's performance 

was poor. 

Next, similar simulations were done for the data from the propagation 

path Trinidad to North Dakota. For both the special purpose and the all 

purpose models the filter estimates again appeared to diverge. A plot of 

the timing error for the all purpose model simulation is given in Figure 27, 

and a plot of the timing error for the special purpose model is shown in 

Figure 28. The predicted RMS error was 32.2 p,sec for the all purpose 

model, but the observed RMS error was 13.3 ̂ sec. The predicted error for 

the special purpose model was 31.5 ̂ sec, but the observed error was 6.5 

lisec. 

As for the path Hawaii to North Dakota the performance of the filter 

was poor for both simulations; indeed, the filter appeared to diverge for 

the special purpose and the all purpose models. To remedy this, the 

standard technique (26) of adding "small" white noises to the "deter­

ministic" and perfectly correlated states of the filter was used. This 

merely changes Equation 17 to 
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Figure 26. Simulated time error for the path Hawaii to N. Dakota and the special purpose model 
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Figure 27. Simulated time error for the path Trinidad to N. Dakota and the all-purpose model 
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Figure 28. Simulated time error for the path Trinidad to N. Dakota and the special purpose model 
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F 0 0 0 0 0 0 0 
0 u 0 0 0 0 0 0 
0 0 u 0 0 0 0 0 
0 0 0 V 0 0 0 0 
0 0 0 0 V 0 0 0 
0 0 0 0 0 G 0 0 
0 0 0 0 0 0 z 0 
0 0 0 0 0 0 0 r 

where the additive noises were picked somewhat arbitrarily as discussed 

in Appendix D, and 

r = 1.10 X lOT^Z. 

The simulations for the Trinidad to North Dakota data were repeated 

using Equation 27 instead of Equation 17. A plot of the timing error for 

the all purpose model is shown in Figure 29. The predicted RMS error was 

32.7 ysec, but the observed RMS error was 9.1 psec. A plot of the timing 

error for the special purpose model is shown in Figure 30. The predicted 

RMS error was 31.7 ysec, but the observed RMS error was 5.1 psec. Again, 

as in the previous simulations the filter appeared to diverge, giving 

poor performance. 

The divergence of the filter in these simulations seemed to indicate 

a basic failure of the models to describe the data. Changing from an all-

purpose UgCt) model to a special purpose Ugft) model generally lowered 

the observed RMS error as would be expected, but did not cure the divergence 

problems. At this point the author decided, based on the heuristic argument 

given previously, to try the final n^(t) model with the additional white 

noise terms. These additional terms make the models for ngCt) consistent 

with the techniques for modeling "seasonal" time series given by Box and 
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Figure 29. Simulated time error for the path Trinidad to N. Dakota and the all-purpose model with 

positive definite Q-matrix 
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Figure 30. Simulated time error for the path Trinidad to N. Dakota and the special purpose model 
with positive definite Q-matrix 
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Jenkins (33) and help stabilize the filter (26). The simulation results 

for the Kaiman filter based on the final model for n^(t) are given next. 

Results for the final local signal model 

Simulations as described previously were done using Equations 13, 14, 

15, and 22 through 26. In addition, the fractional frequency error for 

two-hour averaging times was estimated using the equation (recall AT is 

20 minutes) 

e.-e._, 
—— = fractional frequency error^ 

for 1 such that the timing errors e^ for the last 2 days of the 5-day 

simulations, or the last 5 days of the 20-day simulations, were used in 

the computations. The fractional frequency error is important in applica­

tions requiring the improved timing system to calibrate less accurate 

oscillators in a reasonable period of time, for instance two hours. 

Two simulations using 20 days of data for the propagation path Hawaii 

to North Dakota were done. For these simulations the n^(t) data were 

concatenated since the data were consecutive, but each point in a set 

was shifted by an amount equal to the last point of the previous set to 

correct for the zeroing of the first point of each set as a reference. 

A plot of the timing error for the simulation based on the all-purpose 

model is given in Figure 31. The corresponding plot of the fractional 

frequency error is shown in Figure 32. The filter did not appear to 

diverge in this case, and the RMS error of 10.0 ysec as predicted by the 

Kaiman filter compares well with the 9.5 ysec error observed. The BMS 
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fractional frequency error was observed to be 3.16 x 10 . Plots of 

the timing error and the fractional frequency error for the simulation 

based on the special purpose model are shown in Figures 33 and 34, 

respectively. Again, the filter did not appear to diverge, and the 

predicted RMS error of 6.5 Msec compares well with the observed RMS 

error of 6.7 ysec. The observed RMS fractional frequency error was 

4.26 X 10"^°. 

These two simulations indicated that the final model for n^(t) and 

the special purpose and all purpose models for ngCt) were much better 

than the models originally used early in the investigation. In addition, 

the special-purpose filter performed better than the all-purpose filter 

as would be expected, but the RMS error of 6.5 ysec seemed to be the best 

one could do. Now that reasonably accurate models of the processes 

n^(t) and ngCt) were ascertained, simulations for both all purpose and 

special purpose models were done using the data for three other propagation 

paths. 

Plots of the timing error for the simulations based on the all purpose 

model for the paths Trinidad to North Dakota, North Dakota to Hawaii, and 

Japan to Hawaii are given in Figures 35, 39 and 43, respectively. 

Corresponding fractional frequency error plots for these simulations are 

shown in Figures 36, 40, and 44, respectively. Plots of the timing 

error for the simulations based on the special purpose models for the 

same three paths are shown in Figures 37, 41, and 45, respectively, and the 

corresponding fractional frequency error plots are given in Figures 38, 42, 

and 46, respectively. None of these filter simulations appeared to 
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diverge, and the RMS timing error and fractional frequency error are 

summarized in Table 4. 

Table 4. Summary of Kalman filter simulations 

Simulation RMS Timing Error 
Predicted Observed 

RMS Fractional 
Frequency Error x 10 

Hawaii to N. Dakota 

All Purpose 10.0 9.5 3.16 
Special Purpose 6.5 6.7 4.26 

Trinidad to N. Dakota 

All Purpose 10.0 3.1 1.64 
Special Purpose 5.6 3.4 3.31 

N. Dakota to Hawaii 

All Purpose 10.0 8.2 1.83 
Special Purpose 4.0 3.7 4.31 

Japan to Hawaii 

All Purpose 10.0 11.8 2.03 
Special Purpose 6.5 7.2 3.86 

As can be seen from Table 4 the predicted RMS values agree reasonably 

well with the observed RMS values. The only exception is the result for 

the path Trinidad to North Dakota and the all purpose model. The author 

regards this as a freak result. The RMS fractional frequency errors were 

-10 
all of the order of magnitude of 10 . The results in Table 4 strengthen 

the conclusions drawn on the basis of the 20-day simulations. 

In light of these results the precise timing application Is assessed 

next along with some concluding discussion of these results. 
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DISCUSSION OF RESULTS 

Validity of the models 

The essential results of the Kalman filter simulations described 

previously are summarized in Table 4. These results indicate that the 

two-state integrated Markov process model for n^(t) and the models for 

n^Ct) are reasonably good since the models performed as expected as 

indicated by the Kalman filter error covariance matrix. The simulations 

done prior to the simulations summarized in Table 4 show that the random 

ramp plus random walk model for n^(t) is not valid because the Kalman 

filter simulations based on this model diverge and were not consistent 

with the errors as predicted by the Kalman filter error covariance 

matrix. Thus, one of the goals of this work, to obtain valid state-space 

models for the processes n^(t) and n^(2), has been accomplished. 

Assessment of the precise timing scheme 

From the simulation results summarized in Table 4 it appears that 

the precise timing scheme under consideration will produce an RMS timing 

error of 4 to 7 p,sec using a special purpose n2(t) process model, or an 

RMS timing error of around 10 psec using an all purpose model. Thus, it 

appears necessary to implement a Kalman filter based on a special purpose 

model for the particular propagation path to be used if this timing scheme 

is to be at all useful. 

If a special purpose model is used, then the resulting RMS timing 

error of 4 to 7 ̂ sec makes this precise timing system marginally useful; 

however, this RMS error is comparable to that demonstrated by the system 
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considered by Chi and Wardrip (2), and the system considered here has the 

added advantage of being "closed-loop" in the sense that propagation 

tables are not necessary as they are in the system considered by Chi and 

-10  
Wardrip. Also, the RMS fractional frequency error of a few parts in 10 

would allow this system to be useful on some occasions. 

For example, one could calibrate a second frequency source to within 

a few parts in 10 by averaging over short periods of about two hours. 

Furthermore, this could be done at any time of day. One could not be 

restricted to the zero-diurnal shift periods, as could be the case if 

single frequency Omega were used as the remote reference. Also, it should 

-10  
be noted that this sytem, with a stability of roughly 4 parts in 10 

for a two hour averaging time, is an improvement over the experimentally 

-10  
determined stability of about 7.5 x 10 for the oscillator used in this 

work. 

Therefore, the optimal integration of composite Omega and local 

timing signals yields a timing system that is not spectacularly stable, 

but one that is still useful and probably better than other systems without 

optimal filtering, e.g. the system considered by Chi and Wardrip (2). 

This assessment of the timing system completes the objectives of this 

work. A few ideas for additional investigation will be given next. 

Possible further investigation 

There are several possible topics for additional investigation related 

to this work. One might be an actual on-line implementation of the timing 

system using a microprocessor to experimentallly evaluate the timing system. 
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Another topic would be the development of an adaptive filter to determine 

the special purpose model parameters on-line. Also, the "seasonal" time 

series modeling techniques of Box and Jenkins (33) could be tried directly 

on the Omega data with some analytic diagnostic checking. It also would be 

interesting to try similar analyses using lower "composite" reference 

frequencies (e.g. 12.0 kHz) where there might be less noise but more 

diurnal shift. 
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APPENDIX A: CALCULATION OF THE COMPOSITE OMEGA SIGNAL 

Consider three Omega phase measurements and at frequencies 

Wg, and Wg, respectively. A quadratic function 

2 
v)(w) = p(a))d = kp + k^w + kgW 

can be fit to these measurements. This yields 

4i = ko + Vl + Vl' 

<2 = kq, + + kgU):, 

^ kg + k^w^ + 

which can be solved for k^, k^, and k^. 

Recall that group delay T^ is given by 

T = ~ = -4— — , 
g Vg (dw/dp) dw 

or 

T = 2k„ u+ k 
g 2 1 

in this case. Substitution of the solutions for k^, k^, and k^ into the 

expression for T and using the proportional relationship 

= 9:10:12 

yields the desired expression 

Tg(w) = c^T^ + CgTg + CgTg, (la) 
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where 

= eOW/w^ - 66, 

Cg = -lOOw/w^ + 105, 

= AOw/Wg - 38. 

Il = fi/Wi-

Tj = dz/W;, 

I3 -

The composite time signal Is then computed by using the appropriate phase 

measurements for «(g, and Equation la. 

For the work described here the reference frequency was selected to 

be 12.47 kHz which Is exactly halfway between the Omega broadcasts of 

11 1/3 and 13.6 kHz. This frequency was chosen because It Is close to the 

crossover point where the day and night group velocities are the same 

(recall Figure 3). 

The variation of the group delay Tgis calculated by using the 

changes from the nominal phase delays as and Instead of the 

absolute phases of the signals. 



www.manaraa.com

87 

APPENDIX B; ABSOLUTE PHASE OF OMEGA DATA 

The Omega phase data available to the author were described previously, 

and were obtained by Dr. R. L. Van Allen and used In his dissertation (25b). 

The data were strlpcharts of phase differences between the received Omega 

signal and a cesium-beam frequency standard at the appropriate frequency. 

Thus, the absolute phase of the Omega signal was not contained In the 

strlpcharts. The absolute phase was recovered as follows. 

A reading of Omega phase was taken for a particular propagation path, 

time of day, date, and frequency. A nominal LOP (line of position) number 

N was read from the propagation correction tables published by the United 

States Dept. of Defense (34) that corresponded to the path, time, date, 

and frequency. Also, the corresponding propagation correction PC was read. 

All readings were In cycles. Then the equation 

P + PC + W = N (lb) 

where 

W = 900 for 10.2 kHz, 

W = 1000 for 11 1/3 kHz, 

W = 1200 for 13.6 kHz, 

and P Is the absolute phase, would determine P exactly If the value of PC 

were exactly correct. Since PC Is only a nominal correction, then P was 

only approximately determined by Equation lb. However, this approximate 

value of P determined the correct number of cycles to add to the strlpchart 

reading which then established the correct absolute phase reading for this 

particular data point. The absolute phase at one data point then 
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established the absolute phase at all surrounding data points. This 

procedure was repeated a few times for each path and frequency as a check. 

An example follows. 

As an example consider the path Hawaii to North Dakota, at 10.2 kHz, 

on 1 March 1975, at 0100 hours. The reading from the stripchart was 

0.795 cycles. The corresponding correction was -0.170 cycles, and the 

corresponding LOP number was 1101.533 for the North Dakota receiver 

location. The Equation lb yields 

P + 900 - 0.170 = 1101.533 

or 

P = 201.703. 

The reading of 0.795 corresponds most closely then to 201.795 cycles. This 

exanq)le illustrates the procedure used for recovering the absolute phase of 

the Omega data. 
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APPENDIX C: DERIVATION OF EQUATION 3 

Recall Equation 2 of the text, which for convenience is repeated 

here as Equation Ic. 

-b  0  0  0  0  T/ 2abw( t )  

0  0  0  0  0  

X =  0  0  0  0  X +  0  

0  0  0  0  0  

0  0  0  0  

where w(t) is unity white noise. The solution of Equation Ic is clearly 

given by 

A 0 0 0 0 • f 

0 B e 0 0 0 

0 -C B 0 0 x(0) + 0 

0 0 0 D E 0 

0 0 0 -E D 0 

where 

~ -bt 
A = e , 

2 = cos(Wgt), 

C = sinCwgt), 

D = cos(w^t) , 

E = sin(w^t), 

F =V2iB Jo e-b(t-T)w(T)dT. 
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Then, clearly 

and 

E[F] = 0, 

W(T)W(u)dxdu] 

2abe e^^''^"*'"^E[w(T)w(u)]dTdu 

Zabe'̂ ^̂ j'̂ Q ®  ̂ 6(T-u)dTu 

2abe-:btf% efbUdu 

a(l-er2bt). 

Since Equation Ic is time invariant and w(t) is a white noise, then the 

solution of Equation 1 at times t^ where 

is given by Equation 3c as 

=k 

where 

AT - Ck - 'k-1 

A 0 0 0 0 

0 B C 0 0 

0 -C B 0 0 

0 0 0 D E 

0 0 0 -E D 

A -

B = cos (hyAT) 

Vl + 

C = sinCw^AT), 

F 

0 

0 

0 

0 

(3c) 
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D = cos (u)^ AT) 

E = sin AT) 

E[F] = 0, 

EiF^] = a(l-e 

Equation 3c is the desired result. 
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APPENDIX D: DERIVATION OF THE SIMULATION EQUATIONS 

In this appendix Equations 16 through 27 of the text will be derived. 

First, consider the general form of the n^(t) process model given by 

Equation 2 of the text and the original n^(t) process model given by 

Equation 4 of the text. Let y be the state vector of the ngCt) process 

and z be the state vector of the n^(t) process, and then form a new 

augmented state vector 

x̂  = [y'̂  ẑ ]. 

8 
It then follows from Equations 2 and 4 that x e R , the augmented state 

vector satisfies 

(Id) 

-b  0 0 0 0 0 0 0 /2abw( t )  

0 0 % 0 0 0 0 0 0. 

0 ? 0 0 0 0 0 0 
X =  0 0 0 W| 0 0 0 X +  0 

0 0 0 -U) ,  & 0 0 0 0 

0 0 0 0^ 0 0 0 0 u(t) 

0 0 0 0 0 0 0 1 0 

0 0 0 0 0 0 0 0 0 

and 

n^(t)-n2(t) =[-1-10-1011 0]x (2d) 

where the parameters are defined for Equations 2 and 4 of the text. 

Equations 16 through 19 of the text follow from Equations Id and 2d 

analogously with Appendix C. 

The statistics of the initial state of the n2(t) process are given 

with Equation 2 in the text. The original model for n^(t) would have 

initial state statistics 



www.manaraa.com

93 

E[x(0)]^ = [0 0 m], 

ECX(0)X̂ (0)] = diag(0 OO^) (3d) 

which follow from the original model statistics for n^(t) and Figure 21. 

The initial conditions and are chosen as 

x" = E[x(0)], 

Pq = E[x(0)x^(0)] 

which yield Equations 20 and 21 of the text. 

Next, consider the final model for the n^(t) process together with 

the n^Ct) process model. These are given by Equations 11 and 2 of the 

7 
text, respectively. Forming an augmented state vector xgR as before 

results in the equations 

-b  0 0 0 0 0 0 V2abw( t )  

0 0 wo 0 0 0 0 0  . 0 -aiQ 0 0 0 0 0 0 
X =  0 0 0 0 0 0 X +  0 

0 0 0 0 0 0 0 
0 0 0 0 0 -b  0 V2iBu( t )  

0 0 0 0 0 1 0 0 

and 
n^(t)-n2(t) = [-1 -10-101 0]x. (5d) 

Analogously with Appendix C, Equations 4d and 5d yield Equations 22 and 24 

of the text as well as 
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F 0 0 0 0 0 0 
0 0 0 0 0 0 0 
0 0 0 0 0. 0 0 
0 0 0 0 0 0 0 
0 0 0 0 0 0 0 
0 0 0 0 0 Y 0 
0 0 0 0 0 0 0 

A standard method of mitigating filter divergence problems associated 

with "deterministic" or perfectly correlated states is to add small white-

noise driving terms (26). This changes the expression and was done as 

follows. 

Assuming the additive noises are independent and affect each state 

equally with the change in variance arbitrarily set to 10 percent over a 

time span of 100 data points yields the values of U and V in Equations 

23 and 26 of the text. 

The change in slope of the n^(t) data appeared to be roughly 40 

percent over a time span of 100 points. The output of the integrator is 

perfectly correlated with the Markov process input in the final n^(t) 

model. Assume then arbitrarily that a noise changes the output 4 percent 

over 100 data points. This yields the value of Z in Equation 23 of the 

text. As can be seen, these values U, V, and Z are arbitrary, but reason­

able. These values U, V, and Z and Equation 6d yield Equation 23 of the 

text. Equations 25 and 26 of the text are derived in exactly the same 

manner as Equations 20 and 21 of the text. 

Recall Equation 17 of the text. The same values U, V, and Z just 

discussed were used to produce Equation 27 of the text. The value of r 
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along with U, V, and Z and Equation 17 yields Equation 27 of the text. 

These Equations 16 through 27 are the desired results to be used in the 

Kalman filter simulations. 
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APPENDIX E: SIMULATION PROGRAM 

The simulations described in this work were done at the Iowa State 

University Computation Center and were programmed in Fortran. The follow­

ing computer listing is a listing for a Kalman filter simulation using 5 

days of data and the special purpose model for Japan to Hawaii. The 

programs for the other simulations were similar and will be omitted. 
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KALM4N FILTER SIMULATION PROGRAM USING REAL OMEGA PHASE DATA 
AND REAL LOCAL OSCILLATOR DRIFT DATA 

C 
C 
C 

1 

2 

3 

10 
c 
C 
c 

4 

5 

6 
20 

REAL K(8)  
REAL Rl (8)  
01  KENSIGN P i (360)  ,P2(360) ,P3(360) .0 (60) .DRC360) .TS(360) .Z(360)  
DIMENSION X(8)«P(8 .8)«H(8) .PHI(8 .d) .Q(8 .a)»TE(8) .TF(8) .ET(a .8)  
DIMENSION EE(8 .8)  •  V(  8  *8  )  .  ER (360  )  .XX(360)  
DIMENSION FE(14A)  

AQUIRE PHASE MEASUREMENTS 

WRITE(6 ,1)  
F0RMAT(•1  » .10X.»PHASE DATA (CYCLES) ' )  
DO 10  1=1 ,360  
READ(5.2)  P1(I ) ,P2(I ) ,P3(I ) . ID 
F0RMAT(3F10«3«19X.I1)  ^  
N= I - l  
*RITE(6 . j )  P i ( I ) .P2{I ) .P3(I ) . lO.N 
FORMAT(•  • •10X.3F10.3»19X,11 ,26X.I4)  
CONTINUE 

AQUIRE DRIFT MEASUREMENTS 

WRITS(6 .4)  
FOFMAT(•1« .IGX.•DRIFT DATA (USEC)*)  
DO 20  1=1 .60  
REA0(5 ,5)  0 (1)  . IDA 
FOfiMAT(F10.2 .39X.II  )  
N=I-1  
WR1TE(6 .6)  0 (1) . IDA«N 
FORMAT(» ' . lOX.FlO•2 .39X.II .2  7X.13)  
CONTINUE 
WRITS(6 .7)  ID.IDA 
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7  FORMAT*' l ' .10X, 'PATH=' , II . lOX. 'DRIFT SET=' . I1)  
C 
C INTERFCLATE DRIFT MEASUREMENTS 
C 

*RITE(6 .8)  
3  FORMAT*'- ' . lOX.*  INTERPOLATED DRIFT DATA (USEOM 

DO 30  1=1 .59  
J=I  +  1  
DO 30  L= 1  .6  
4=L-1  
M=L+(I- l j*6  
0R(M)=0(I )+{OCJ)-D(I ) ) /6 .*FL0AT(N)  
WRITE(6 ,9)  DR(M).M 

9  FORMAT*'  ' .10X,F10 .2 .39X.14)  
30  CONTINUE 

DO 40  L=l ,6  
N=L-1  
M=354+L œ 
ORtM)=D*60)+*D*63 Î -D(59)1 /6 .»FLOAT*N)  
«RITE(6 .9)  DR(M),M 

40  CONTINUE 
C 
C READ REFERENCE FREQUENCY F  
C 

REAO(5, l1>  F  
11  F0RMAT*F10.3 i  

WR1T£(Ô»12)  F  
12  FORMAT*'I ' . IOX. 'REFERENCE FREQUENCY=• ,F10«3 . •  KHZ')  

C 
C DETERMINE COMPOSITE TIME SIGNAL ERROR 
C 

WRITf  *6 . IS)  
15  FORMAT*•1' .10X.«COMPOSITE TIME SIGNAL ERROR *USEC)' )  

Cl=(60 .*F/34 .*3 . ) -66 .  
C2=*-100 .*F/34 .*3 . )+105 .  
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C3=(40 .*F/34 .*3 . ) -38 .  
SUM1=0.  
SUM2-0 .  
00  SO 1=1 .360  
T1=P1(I ) /10200 .*1000000 .  
T2=P2(I ) /34000 .*3000000 .  
T3=P3(I ) /13600 .*1000000 .  
TSd )=C1*T1+C2*T2+C3*T3 
SUMl=SUMl+TS(I) /360 .  

SO CONTINUE 
C 
C DETERMINE MEASUREMENTS Z 
C 

DC 60  1=1 .360  
Z(I )=TSfIJ-SUMl 
N=I-1  
WRITE (6 ,14)  ZfD.N 

14  FORMAT*'  ' .10X.E16.6 .40X.13)  
60  CONTINUE 

WRITE(6 .13)  
13  FOfiMAT{ •  I* .  lOX,»  MEASUREMENTS (USEC)' )  

DC 70  1=1 .360  
Z(I )=OR(l ) -Z(I )  
N=I-1 
«RITE {6 .14)  ZCD.N 

70  CONTINUE 
C 
C INPUT MODEL PARAMETERS AND INITIAL CONDITIONS 
C 

IFLAG=0 
CALL PARNtX.P.H.PHl .O.R)  

C 
C WRITE PARAMETERS 
C 

WRITE(6 .75)  
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75  FORMATC* 1  •  .60X,*  SYSTcM MODEL*/*  -  •  .62X .  •  Q-MATRIX"/ .  8X.  •  1  •  .  
*1SX,*2*  ,  15X, '3* ,1SX,*4* ,15X, '5 ' ,15X,*6* .15X, '7* .15X. '8* / )  

DO 110  1=1 ,8  
WRITE(6 ,16)  I . (a{I .J ) ,J=l ,8 )  

16  FORMAT!•  * . I l  .1X.8Elb«6)  
110  CONTINUE 

MRITE(6 .17)  
17  FCRMAT(*-* ,57X,«TRANSITION MATRIX*/*-* ,8X. ' l ' .15X.*  2*•15X.*  3 • .  

*15X,*4' ,15X, '5 ' ,15X, '6 ' .15X, '7* .15X.*8*/ )  
00 120 1=1,8 
*RITE(6 .16)  I .  (PHK I ,J  j  ,J=1  .8 )  

120  CONTINUE 
WRIT£(6 . ie )  

18  FORMAT!•-» ,45X,*H-VECT0R*, lOX,«MEASUREMENT COVARIANCE R*)  
MRIT<E(6 ,1S)  H(1J ,R 

19  FORMAT!*-• ,38X,*1  * ,2X,E16«6 ,14X,El6 .6)  
DC 130  1=2 ,8  
MRITE!6 ,21)  I .H!I )  

21  FORMAT!* * ,3 t iX,11 ,2X.E16.6I  
130  CONTINUE 

MRIT£!6 .22)  
22  FORMAT!«-* .57X,*  INITIAL CCNOITIONS*/*- •»62X,«P-MATRI X«/ • -« ,8X,  

**1* ,15X. '2* .15X. '3* ,15X, '4 ' ,1SX, 'S« .15X, '6* ,15X, '7* ,15X, '8 ' / )  
00  140  1=1 ,8  
WRITE!6 ,16)  I , !P!I ,J ) •J=l ,8 )  

140  CONTINUE 
WRITE!6 ,23)  

23  FORMAT!*-* ,61X,«ESTIMATE X*)  
00  150  1=1 ,8  
WRITE!6 ,24)  I ,X!I )  

24  FORMAT!« • ,50X.11 ,7X,£16 .6)  
150  CONTINUE 

WRITE!6 ,26)  
26  FORMAT!*1* ,56X,«KALMAN FILTER RESULTS' /*  * ,59X,*8-STATE FILTER*/  

**  « ,33X,«RESULTS IN USEC OR USEC**2 OR DIMLESS WHERE APPROPRIATE*)  
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c 
c 
c 
c 
c 
c 

a-STATE KALMAN FILTER 

READ MAXIMUM RESIDUAL AGC AND END OF TRANSIENT PERIOD lEND 

REA0(â*30ej  AGC.IEND 
306  F0RMAT(FI0 .2 , I3)  

OO 80  11=1,360  
C 
C 
c 

COMPUTE GAINS 

IT=1 
C A L L  V E C C F t X . H . P . I T . T E . S i  
I T = 3  
CALL VECOP(TE.H,P,IT.Rl.S) 
a=s+R 
I T = 2  O 

CALL VECOPCX.H.P. I T s K.S) 
00 100 1=1,8 

1 0 0  K ( I ) = K ( l i / B  
C 
C  U P D A T E  E S T I M A T E S  

1F(II  .LT.  lENDÏ GO TO 305  
RRR=ABS(RR)  
IF(RRR.LT.AGC) GO TO 30  5  
IFLAG=1 
GO TO 30  4  

C 
IT=3 
CALL VECaP(H ,X .P ,IT,TE,S)  
RR=Z(II>-S  

C 
C 
C 

CHECK RESIDUALS 
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3C5 CONTINUE 
OO 90 J-1,8 
K f J ) = K C J ) * R R  
X( J)  = X(J)+K(J)  

9 0  K ( J J  =  K { J ) / R R  
D O  1 6 0  I - l . S  
0 0  1 6 0  J = l , 8  

1 6 0  S T f l .  J ) = - K ( I ) * H (  J 1  
D C  1 7 0  1 = 1 . 8  

1 7 0  E T C I  .  I ) = E T (  1 , 1  )  +  l  .  
C A L L  M U L T C E T , P . V )  
O O  1 7 1  1 = 1 , 8  
D O  1 7 1  J = l , 8  

171 
304 CONTINUE 

ES=X(7)  
£ R ( I I J = D R < I I > - E S  
I F ( I I . L T . 2 1 7 )  G O  T O  4 0 0  
L L = I I - 2 1 6  
J J = I I - 6  
F E ( L L ) = C E F ( I I ) - E R ( J J ) ) / 7 . 2 E 9  

4  0 0  C O N T I N U E  
C 
C PRINT CUT RESULTS 
C 
C 
C  P R I N T  O U T  E V E R Y  S I X T H  P O I N T  
C  

ICHK=II/6 
IL=II-6*ICHK 
IF(IL.N5.0)  GO TO 401 
MRITE(6.A5J 

8 5  F O R M A T C - ' , 2 3 X , ' G A I N '  , 1 0 X , « E S T I M A T E  X ' . l O X , ' E S T I M A T E D  D R I F T ' ,  
• l O X , ' A C T U A L  D R I F T ' , 1 0 X , ' E R R O R ' / )  

W R I T E ( 6 , 6 6 )  K ( l i . X (  1 ) , E S , D R ( I  I ) , E R ( H J  
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8 6  F O R M A T !  - . 1  • , 1 3 X , E 1 6 . 6 . 5 X . E 1 6 . 6 , 7 X . E 1 6 . 6 , 7 X , E 1 6 . 6 . 8 X , E 1 6 . 6 )  
D O  1 8 0  1 = 2 . 8  
W R I T E  ( 6 . 2 7 )  l . K C D . X d )  

2 7  F O F M A T C  •  .  1 1  . 1  S X  . E 1 6  •  6 . 5  X .  E l  6 .  6  )  
1 8 0  C O N T I N U E  

W R I T E ( 6 . 2 6 )  
2 8  F O R M A T ( • - • . 6 2 X . « P - M A T R I X * / ' - ' . 8 X , ' 1 ' . 1 5 X . ' 2 * . 1 5 X . ' 3 ' . 1 5 X . ' 4 ' .  

* 1 5 X . ' S ' , 1 5 X . « 6 * . 1 5 X . * 7 * . 1 5 X . * 8 » / )  
D O  1 9 0  1 = 1 . 8  
W R I T E ( 6 . 1 6 )  I « ( P < I . J j . J = l . 8 )  

1 9 0  C O N T I N U E  
W R I T E ( 6 . 3 0 1 )  I I . Z ( I I )  

3 0 1  F O K M A T C • - • . 4 1 X . * I T E R A T I C N = «  . 1 4 . l O X » • M E A S U R E M E N T = »  . F I  0 . 3 . ' U S E C • )  
I F ( I F L A G . N C . l )  G O  T O  3 0 2  
W R I T E ( 6 . 3 0 3 )  

3 0 3  F O R M A T * * - * . 5 8 X , ' T R I  V I  A L L Y  U P D A T E D » )  
3 C 2  C O N T I N U E  

I F L A G = 0  
I F d l  . L E *  1 0 8 U )  G O  T O  4 0  1  
L L = I 1 - 1 0 8 0  
W R I T E ( ô . 4 0 2 )  F E ( L L )  

4 0 2  F O R W A T ( ' - " , 4 4 X . ' F R A C T I O N A L  F R E Q U E N C Y  E R R O R = ' . E l  6 . 6 )  
4 0 1  C O N T I N U E  

C  
C  P R O J E C T  A t - E A O  
C  

I T = 2  
C A L L  V E C O P t X . X . P H I . I T . T E . S J  
00 200 1=1*8 

2 0 )  X ( I ) = T E ( I )  
C A L L  M U L T C P H I . P . V )  
00 210 1=1.8 
O C  2 1 0  J = l * 8  

2 1 0  £ T ( 1 >  J ) = P H I (  J .  1 )  
C A L L  M U L T ( V , E T . E E )  
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D O  2 2 0  1 = 1 , 8  
O C  2 2 0  J = l « 8  

2 2 0  P ( I . J ) = E E ( I . J j + Q ( I . J )  
£ 0  C O N T I N U E  

P L O T  E R R C P  

N = 3 6 0  
X S I 2£=a. 
X S F = * 5 .  
X M I N = 0 .  
Y S I Z E = 6 . 5  
Y S F = 0 .  
Y M I N = - 3 5 .  
M 0 D E = 2  
I S Y M = 0  
D O  2 3 0  1 = 1 . 3 6 0  

2 3 0  X X ( I ) = F L 0 A T ( I - 1 )  
I F ( I O . N E . l )  G O  T O  2 4 0  
C A L L  G R A P h ( N . X X « e R . I S Y M.MCDE . X S IZE t Y S IZE . X S F . X M I N , Y S F . Y M I N .  

• • T I M E  ( 2 0  M I N ) ; * , * T I M E  E R R O R  ( U S E C ) : ' , ' E X P E R I M E N T  i ; , '  ; • )  
2 4 0  C O N T I N U E  

I F l l ù » N £ . 2 )  G O  T O  2 5 0  
C A L L  G R A P H C N . X X . E R . I S Y M . M O D E . X S I Z E . Y S I Z E . X S F . X M I N . Y S F . Y M I N .  

• • T I M E  ( 2 0  M I N ) : ' . ' T I M E  E R R O R  ( U S E C ) ; ' . • E X P E R I M E N T  2 ; • . •  ; ® J  
2 5 0  C O N T I N U E  

I F ( I l ) « N E . 3 )  G O  T O  2 6 0  
C A L L  G R A P H ( N . X X . E R . I S Y M . M O D E . X S I Z E . Y S I Z E . X S F , X M I N . Y S F . Y M I N .  

• • T I M E  ( 2 0  M I N ) ; • . « T I M E  E R R O R  ( U S E C ) : • . • E X P E R I M E N T  3 ; . '  : • )  
2 6 0  C O N T I N U E  

l F ( I O . N E . 4 )  G O  T O  2 7 0  
C A L L  G R A P h ( N . X X . E R . I S Y M . M O D E . X S I Z E . Y S I Z E , X S F , X M I N . Y S F , Y M I N .  

• • T I M E  ( 2 0  M I N ) ; • , " T I M E  E R R O R  ( U S E C ) ; • . • E X P E R I M E N T  : • )  
2  7 0  C O N T I N U E  

I F d O . N E . S i  G O  T O  2 8 0  
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W R I T E f 6 . 4 C 4 i  S U M l . S T D  
4 0 4  F O R M A T { • - • » 4 5 X . « F R A C T I O N A L  F R E Q U E N C Y  E R R O R  ( D I M E N S I O N L E S S ) *  

•  • - • . 4 1 X  . • A V E R A G E ^ * . E 1 6 . 6 . l O X . * R M S = * . E 1 6 . 6 )  
S T O P  
E N D  
S U B R O U T I N E  V E C O P f V . H . P . i T . T E . S )  
D I M E N S I O N  V ( 8 ) . H ( 8 ) • P ( 8 . 8 ) . T E ( 8 )  
D O  7 0  1 = 1 . 8  

7 0  T E ( I ) = 0 .  
5 = 0 .  

I F ( I T . N E . l )  G O  T O  2 0  
D O  1 3  [ = 1 . 8  
D O  1 0  J = 1 . 8  

1 0  T E ( I » = T E f I l + P ( J )  
2 0  C O N T I N U E  

I F ( I T . N E . 2 )  G C  T O  4 0  
D O  3 0  1 = 1 . 8  
D O  3 0  J = l , 8  

3 0  T E ( I ) = T E ( I ) + P ( I , J ) * H ( J )  
4 0  C O N T I N U E  

I F  ( I T . N E . 3 )  G O  T O  6 0  
D O  5 0  1 = 1 , 8  

S O  S = S + V ( I  ) * H ( I  )  
60 C O N T I N U E  

R E T U R N  
E N D  
S U B R O U T I N E  M U L T ( A . B . C )  
D I M E N S I C N  A ( 8 . 8 )  . 8 ( 8 . 8 )  . C ( Ô » 8 >  
D O  2 0  1 = 1 , 8  
D O  2 0  J = 1 , 8  

2 0  C ( I , J ) = 0 .  
D C  1 0  1 = 1 . 8  
D O  1 0  J = 1 . 8  
D O  1 0  L = l , 8  

1 0  C ( I , J ) = C ( I . J ) + A ( I . L ) * B ( L . J )  
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RETURN 
END 
SUBROUTINE PARM(X.P.H.PHI.QtR) 
D I M E N S I O N  X ( 8 ) . P ( 8 . 8 ) , H ( 8 ) , P H I ( 8 . 8 ) , Q ( 8 , 8 )  

D O  1 0  1 - 1 * 8  
X ( 1 ) = 0 .  

D O  1 0  J = l , 8  
P ( I , J ) = 0 .  
P H I f I . J ) = 0 .  

10 a(i,jy=o. 
c 
C INITIAL CCNOITIONS 
C 
c 
C SYSTEM MODEL 
c 

H ( i ) = - 1 .  g  
H(2) = -l. 
H I 4 ) = - 1 .  
H { 7 ) = 1 .  
X ( 6 > = - 6 , 3 7 4 7 8 4 E - l 0  
P H I ( 6 . 6 ) = C . 9 9 0 0 5 4  
P H I { 7 . 7 J = 1 ,  
P H I C 7 . 6 i - l . 1 9 E 9  
P H I ( 2 , 2 1 = 0 . 9 9 6 1 9 7  
P H I ( 3 . 3 ) = G . 9 9 6 1 9 7  
P H I C 2 » 3 ) = 0 . 0 8 7 1 2 9  
P H I ( 3 . 2 ) = - 0 . 0 8 7 1 2 9  
P H I ( 4 . 4 ) = 0 . 9 8 4 9  
P H I ( 5 . 5 ) = 0 . 9 8 4 9  
P H I ( 4 , 5 ) = 0 . 1 7 3 1 2 3  
P H I f 5 . 4 ) = - 0 . 1 7 3 1 2 3  
R— O * 
3 ( 2 , 2 ) = 0 . 1 0 0 7 7 0  
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a ( 3 . 3 ) = Q ( 2 . 2 )  
a ( 4 , 4 ) = 0 . 1 2 2 0 9 0  
Q ( S « 5 ) = Q ( 4 . 4 }  
0 ( 7 . 7 ) = . 1 5 8  
a ( 6 . 6 ) = 1 . 5 1 9 8 2 5 E - 2 1  
P ( 6 , 6 ) = 7 . 6 7 8 4 0 8 2 - 2 0  
0 ( 1 , 1 ) = 5 4 . 1 6 1 2 2 8 1  
P H K l  , 1 1 = 0 . 7 4 9 7 6 1 6  
P d . l  )  =  1 2 2 . 6 9 6  
P ( 5 . 5 1 = 1 2 2 . 0 9  
P ( 4 , 4 ) = 1 2 2 . 0 9  
P ( 3 . 3 ) = 1 0 0 . 7 7  
P ( 2 . 2 > = 1 0 0 . 7 7  
R E T U R N  
E N D  
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